Azole fungicides affect mammalian steroidogenesis by inhibiting sterol 14 alpha-demethylase and aromatase.
نویسندگان
چکیده
Azole compounds play a key role as antifungals in agriculture and in human mycoses and as non-steroidal antiestrogens in the treatment of estrogen-responsive breast tumors in postmenopausal women. This broad use of azoles is based on their inhibition of certain pathways of steroidogenesis by high-affinity binding to the enzymes sterol 14-alpha-demethylase and aromatase. Sterol 14-alpha-demethylase is crucial for the production of meiosis-activating sterols, which recently were shown to modulate germ cell development in both sexes of mammals. Aromatase is responsible for the physiologic balance of androgens and estrogens. At high doses, azole fungicides and other azole compounds affect reproductive organs, fertility, and development in several species. These effects may be explained by inhibition of sterol 14-alpha-demethylase and/or aromatase. In fact, several azole compounds were shown to inhibit these enzymes in vitro, and there is also strong evidence for inhibiting activity in vivo. Furthermore, the specificity of the enzyme inhibition of several of these compounds is poor, both with respect to fungal versus nonfungal sterol 14-alpha-demethylases and versus other P450 enzymes including aromatase. To our knowledge, this is the first review on sterol 14-alpha-demethylase and aromatase as common targets of azole compounds and the consequence for steroidogenesis. We conclude that many azole compounds developed as inhibitors of fungal sterol 14-alpha-demethylase are inhibitors also of mammalian sterol 14-alpha-demethylase and mammalian aromatase with unknown potencies. For human health risk assessment, data on comparative potencies of azole fungicides to fungal and human enzymes are needed.
منابع مشابه
Targeted gene disruption of the 14-alpha sterol demethylase (cyp51A) in Aspergillus fumigatus and its role in azole drug susceptibility.
The role of Aspergillus fumigatus 14alpha-sterol demethylase (Cyp51A) in azole drug susceptibility was assessed. Targeted disruption of cyp51A in azole-susceptible and -resistant strains decreased MICs from 2- to 40-fold. The cyp51A mutants were morphologically indistinguishable from the wild-type strain, retaining the ability to cause pulmonary disease in neutropenic mice.
متن کاملA mutation in the 14 alpha-demethylase gene of Uncinula necator that correlates with resistance to a sterol biosynthesis inhibitor.
We investigated the molecular basis of resistance of the obligate biotrophic grape powdery mildew fungus Uncinula necator to sterol demethylation-inhibiting fungicides (DMIs). The sensitivity of 91 single-spore field isolates of U. necator to triadimenol was assessed by using a leaf disc assay. Resistance factors (RF) ranged from 1.8 to 26.0. The gene encoding the target of DMIs (eburicol 14 al...
متن کاملSequence variation in the CYP51 gene of Blumeria graminis associated with resistance to sterol demethylase inhibiting fungicides.
Resistance to sterol 14alpha-demethylase inhibiting fungicides (DMIs) has been correlated with mutations in the CYP51 gene, which encodes the target enzyme eburicol 14alpha-demethylase. To test the hypothesis that variation in the CYP51 gene explains variation for DMI sensitivity in barley and wheat powdery mildew species, this gene was sequenced from isolates of Blumeria graminis f.sp. hordei ...
متن کاملSensitisation of an Azole-Resistant Aspergillus fumigatus Strain containing the Cyp51A-Related Mutation by Deleting the SrbA Gene
Azoles are widely used for controlling fungal growth in both agricultural and medical settings. The target protein of azoles is CYP51, a lanosterol 14-α-demethylase involved in the biosynthesis of ergosterol. Recently, a novel azole resistance mechanism has arisen in pathogenic fungal species Aspergillus fumigatus. Resistant strains contain a 34-bp or 46-bp tandem repeat (TR) in the promoter of...
متن کاملPurification, reconstitution, and inhibition of cytochrome P-450 sterol delta22-desaturase from the pathogenic fungus Candida glabrata.
Sterol delta22-desaturase has been purified from a strain of Candida glabrata with a disruption in the gene encoding sterol 14alpha-demethylase (cytochrome P-45051; CYP51). The purified cytochrome P-450 exhibited sterol delta22-desaturase activity in a reconstituted system with NADPH-cytochrome P-450 reductase in dilaurylphosphatidylcholine, with the enzyme kinetic studies revealing a Km for er...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Environmental Health Perspectives
دوره 111 شماره
صفحات -
تاریخ انتشار 2003